MDOT Camelback Bridge Example

AASHTOWare Bridge Rating

May 2022

Contents

M	DOT Camelback Bridge Example AASHTOWare Bridge Rating	1
	Background	2
	Assumptions/Limitations	2
	General Bridge Information	3
	Material Properties	5
	Superstructure Definition	8
	Load Case Descriptions	11
	Framing Plan Details	12
	Typical Section	13
	Shear Reinforcement	17
	Member Descriptions	18
	Cross Sections	21
	Bridge Alternatives	38
	Analysis	40
	Vehicle Selection	40
	Analysis	41
	Reporting	41

This tutorial was created on behalf of MDOT by the Center for Technology & Training, please contact <u>loadrating@mtu.edu</u> for assistance or visit <u>http://loadrating.michiganltap.org/</u> for more information.

Background

What follows is a general guide for modeling a camelback bridge in AASHTOWare Bridge Rating (BR). The sample bridge was taken from a set of MDOT standard plans for a 60-ft reinforced concrete girder with a 22-ft roadway. A similar approach can be applied to other standard lengths. The tutorial methodology should be adapted accordingly for any modifications to the standard plan and for the specific rebar present in the bridge.

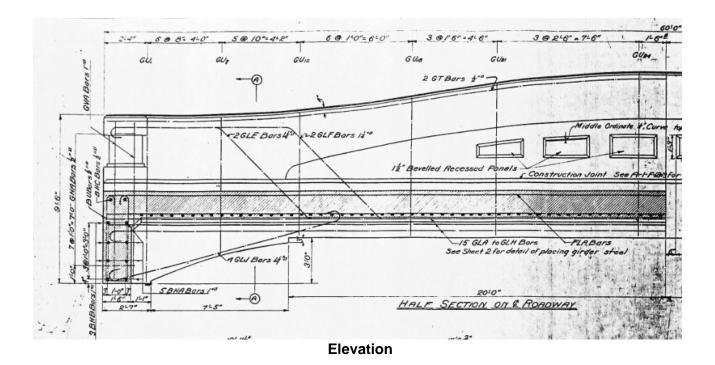
This tutorial is being provided by the Michigan Department of Transportation (herein referred to as MDOT) as a courtesy service to contractors, consultants and local agency bridge owners. In preparation of this tutorial, MDOT has endeavored to offer current, correct and clearly expressed information. However, error may occur. MDOT expressly disclaims any liability, of any kind, for any reason, that might arise out of the use of this tutorial.

Assumptions/Limitations

This tutorial is prepared based on the assumption that the bridge is in a pristine, un-deteriorated state and was built in accordance with the construction plans. All load ratings must reflect the current condition of the structure. The load rating engineer should perform a field evaluation to confirm the correctness of the plans and use engineering judgment to determine whether any observed deterioration may affect the structural capacity of the bridge.

In a more traditional girder arrangement the compression zone of each girder is laterally braced by the bridge deck. The camelback bridge design results in an un-braced compression zone. This situation is not addressed by AASHTOWare Bridge Rating. Should there be evidence of distress in the compression zone of a camelback beam; a more detailed finite element model may be warranted.

The deck is conservatively considered for weight only, and contributes no structural capacity to the bridge as modeled in this tutorial. For situations where additional capacity is needed in the bridge, a portion of the deck slab can be considered as a structural part of the girder, subject to the limitations of AASHTO Section 8. Note that BR calculates the weight of the structural portion of the deck, so it should be deducted from the additional self-load entered on the Member Alternative Description screen.


Material properties have been assumed, according to the age of the bridge, using the Michigan Bridge Analysis Guide (BAG). The most recent bridge design revision date from the standard plans was 1922, which was assumed to coincide with construction for the purpose of determining material properties.

BAG, Table 10.28: 1922-1935 Grade A Concrete: f'c = 3 ksi Es/Ec = n = 12

BAG, Table 10.26: Structural or unknown grade prior to 1954: fy = 33 ksi

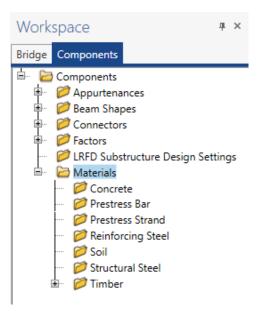
General Bridge Information

From BR's Bridge Explorer window, create a new bridge by selecting *File/New/New Bridge* and enter the following description data:

A	New	Brid	qe
****	1 ACAA	DITU	чyс

_	×

		Template	 Superstructures
Bridge ID: Camelback	NBI structure ID (8): Camelback	Bridge completely defined	Culverts
			Substructures
Description Description ((cont'd) Alternatives Global reference poin	It Traffic Custom agency fields	
Name: Sample	e of a Camelback Bridge Load Rating	Year built: 1922	
	on MDOT standard plans for a 60-ft reinforced c with a 22 ft roadway.	oncrete camelback	
Location: Michig	gan	Length: 60.00	ft
Facility carried (7):		Route number: 01	
Feat. intersected (6):		Mi. post:	
Default units: US Cus	stomary 🗸		
AASHTOWare association.	BrR ØBrD BrM		


Close the window by clicking **OK**. This saves the data to memory and closes the window.

Material Properties

Enter the materials to be used by members of the bridge by clicking on + to expand the tree for Materials, listed under the Components tab in the Workspace window. The tree with the expanded Materials branch is shown below:

To add a new concrete material click on **Concrete** in the tree and select *File/New* from the menu (or right mouse click on **Concrete** and select *New*).

Enter the data shown in the window below.

🕰 Bridge Materials - Concrete

Name:	Concrete-1922		
Description:	Estimated from the BAG	table 10.28	
Compressive	strength at 28 days (f'c):	3.000	ksi
Initial compre	essive strength (f'ci):		ksi
Composition	of concrete:	Normal]
Density (for o	dead loads):	0.150	kcf
Density (for r	modulus of elasticity):	0.150	kcf
Poisson's rati	0:	0.200	
Coefficient of	f thermal expansion (α):	0.0000060000	1/F
Splitting tens	ile strength (fct):		ksi
	Compute		
Std modulus	of elasticity (Ec):	3320.56	ksi
LRFD modulu	us of elasticity (Ec):	3879.84	ksi
Std initial mo	dulus of elasticity:	0.00	ksi
LRFD initial n	nodulus of elasticity:	0.00	ksi
Modulus of r	upture:	0.416	ksi
Shear factor:		1.000	

Copy to library	Copy from library	OK	Apply	Cancel

Click **OK** to save the data to memory and close the window.

Double click on **Reinforcing Steel** in the bridge tree. The reinforcing steel may be copied from the library. Select the **Copy from Library...** button and choose the appropriate material from the list. The window will look like that shown below:

– 🗆 🗙

🕰 Bridge Materials - Reinforcing Steel

_	\times

Name:	Structural or u	nknown grade prior				
Description:	Structural or u	nknown grade prior t	o 1954			
Material prop	perties					
Specified yiel	ld strength (fy):	33.000	ksi			
Modulus of e	elasticity (Es):	29000.00	ksi			
Ultimate strength (Fu): 60.000		ksi				
Type Plain Epoxy Galvan	ized					
	Copy t	co library Copy	from library	ОК	Apply	Cancel

Click **OK** to save the data to memory and close the window.

Superstructure Definition

The default impact factors will be used so we can skip to **Structure Definition**, listed under the Bridge tab in the Workspace window.

🚯 Bridge Workspace - Camelback	
🖃 🕰 Camelback	
🗄 📖 🧰 Materials	
🧰 Structural Steel	
🚊 📖 🧰 Concrete	
🛄 🚺 Concrete-1922	
🖕 🧰 Reinforcing Steel	
Unknown grade prior 1954	
🚞 Prestress Strand	
📄 Prestress Bar	
🗄 🚥 Timber	
L 📄 Soil	
🗄 ····· 🧰 Beam Shapes	
🗄 ····· 🧰 Appurtenances	
🚞 Diaphragm Definitions	
📖 Lateral Bracing Definitions	
Impact / Dynamic Load Allowance	
MPF LRFD Multiple Presence Factors	
🗄 ····· 🧰 Factors	
🔤 LRFD Substructure Design Settings	
EC Environmental Conditions	
Design Parameters	
DEFINITIONS	
🛄 BRIDGE ALTERNATIVES	

Doubleclick on **SUPERSTRUCTURE DEFINITIONS** to create a new structure definition. The following dialog will open.

A	New	Su	perstructure Definition	۱.
----------	-----	----	-------------------------	----

Girder system superstructure	
Girder line superstructure	Superstructure definition wizard
Floor system superstructure	
Floor line superstructure	
 Truss system superstructure 	
 Truss line superstructure 	
Reinforced concrete slab system superstructure	
Concrete multi-cell box superstructure	

OK

Cancel

Select **Girder System Superstructure** and the Structure Definition window will open. Enter the data shown below:

Click **OK** to save the data to memory and close the window.

🕰 Girder System Superstructure Definition

_	П	×
		~

Definition Analysis Specs	Engine			
Name: Camelback				Frame structure simplified definition
				Deck type:
Description:				Concrete Deck
Default units: US Customary Number of spans: 1 💭 Number of girders: 2 💭	Enter span lengths along the reference line: Span Length (ft) 1 60.00			For PS only Average humidity: % Member alt. types Steel P/S R/C Timber
 Horizontal curvature along refere 				
Horizontal curvature	Distance from PC to first support line:		ft	
Superstructure alignment	Start tangent length:		ft	
Curved	Radius:		ft	
◯ Tangent, curved, tangent	Direction:	Left v	n.	
Tangent, curved		Len v	ft	
Curved, tangent	End tangent length:		ft	
	Distance from last support line to PT:			
	Design speed:		mph	
	Superelevation:		%	

OK Apply

Cancel

Load Case Descriptions

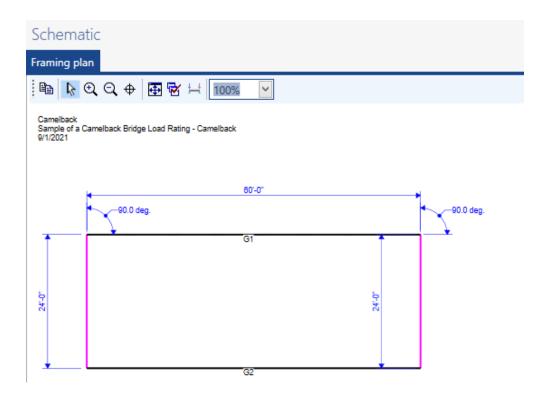
Click **Load Case Description** in the bridge tree by expanding the Superstructure Definition branch to define the dead load cases. Select **Add Default Load Case Descriptions**. The completed Load Case Description window is shown below.

Load case name	Description	Stage		Туре	Time* (days)		
DC1	DC acting	N *	D,DC	Ŧ			
DC2	DC acting	C *	D,DC	-			
DW	DW acting	C *	D,DW	-			
SIP Forms	Weight du	N *	D,DC	-			

Click **OK** to save the data to memory and close the window.

Framing Plan Details

Double-click **Framing Plan Detail** in the tree to describe the framing plan. Enter the data shown below.


ayout Diaphragms		
Support Skew (degrees)	Girder spacing orientation Perpendicular to girder Along support	
2 0.000	Girder Girder spacing (ft) Start of girder End of girder 1 24.00	

Select **OK** to close the window.

It is always a good idea to check the schematic after entering the framing plan detail information. Do this by selecting the **schematic** button while **framing plan detail** is highlighted in the bridge workspace tree. Alternatively, you may select *Bridge/schematic* while the **framing plan detail** is highlighted.

Typical Section

Next define the structure typical section by double-clicking **Structure Typical Section** in the Bridge Workspace tree. Input the data describing the typical section as shown below.

Deck Geometry

۵	Structure Typical Section	
	Distance from left edge of deck to superstructure definition ref. line	Distance from right edge of deck to superstructure definition ref. line
	Γ, · · · ·	Superstructure Definition

	Deck thickne	BSS	Superstruct Reference I	ure De Line	efinition	4						
Left overhang	4					, F	light a	verhang				
Deck Deck (co	ont'd) Parapet	Media	n Railing	Ge	eneric	Sidew	alk	Lane position	Striped lanes	Wearing surface		
Superstructure d	efinition reference	line is	within		✓ the	bridge	deck.					
			Start		En	d						
	t edge of deck to efinition reference	line:	13.00	ft	13.00		ft					
	ht edge of deck to efinition reference		13.00	ft	13.00		ft					
Left overhang:		[1.00	ft	1.00		ft					
Computed right	overhang:		1.00	ft	1.00		ft					
										OK	Apply	Cancel

The **Deck (cont'd)** tab is used to enter information about the deck concrete and thickness. The material to be used for the deck concrete is selected from the list of bridge materials described in the Background section.

_

A Structure Typical Section

Distance from left edge superstructure definition	e of deck to j Distance from right edge of deck to n ref. line superstructure definition ref. line
De	ick 4 Superstructure Definition 7 skress I Reference Line 7
Left overhang	Right overhang
Deck Deck (cont'd) Parap	et Median Railing Generic Sidewalk Lane position Striped lanes Wearing surface
Deck concrete:	Concrete-1922
Total deck thickness:	18.0000 in
Load case:	Engine Assigned
Deck crack control parameter:	kip/in
Sustained modular ratio factor:	3.000
Deck exposure factor:	
	OK Apply Cancel

_

Lane Positions

Select the Lane Position tab. Manually enter the width of the travelway as shown in the figure below

ruc	ture Typical S	Section				_	
	Travelw		ravelway 2				
ck	Deck (co	nt'd) Parapet Median	Railing Generic Sidewa	alk Lane position Striped	l lanes Wearing surface		
	Travelway number	Distance from left edge of travelway to superstructure definition reference line at start (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at start (B) (ft)	Distance from left edge of travelway to superstructure definition reference line at end (A) (ft)	Distance from right edge of travelway to superstructure definition reference line at end (B) (ft)		
Þ	1	-11.00	11.00	-11.00	11		
		ilable to trucks:	Compute		New Dupli	cate	Delete

Click **OK** to save the data to memory and close the window.

It is also a good idea to check the schematic after entering the structure typical section information. This is done in the same manner as was used to check the schematic of the framing plan details. Note that for reinforced concrete structures a generic beam shape is used to represent the beam.

chematic		
raming plan Typi	cal section	
🖻 <u>र</u> 🔍 🔍	0% 🕂 🔂	
Camelback Sample of a Ca 9/1/2021	melback Bridge Load Rating - C	Camelback
•	26'-0"	
	22'-0"	
Decl	Thickness 1'-6"	
1	Travelway 1	
1' 0"	24'-0"	1"-0"

Shear Reinforcement

Now define the vertical shear reinforcement by double-clicking on **Vertical** (under **Shear Reinforcement Definitions** in the tree). Define the reinforcement as shown below.

cal			_	
]				
Material:	Structural or	unknown grade prio	r	>
Bar size:	7 🗸			
Number of legs:	2.00]		
Inclination (alpha):	90.0	Degrees		
nt				
	Material: Bar size: Number of legs: Inclination (alpha):	Material: Structural or Bar size: 7 Number of legs: 2.00 Inclination (alpha): 90.0	Material: Structural or unknown grade prior Bar size: 7 Number of legs: 2.00 Inclination (alpha): 90.0	Material: Structural or unknown grade prior Bar size: 7 Number of legs: 2.00 Inclination (alpha): 90.0

Click **OK** to save to memory and close the window.

Cancel

OK

Apply

Member Descriptions

The Member window shows the data that was generated when the structure definition was created. No changes are required at this time. The first Member Alternative that we create will automatically be assigned as the Existing and Current Member alternative for this member (as shown below).

A Member	_		×
Member name: G1 Link with: None	Link with: None 🗸		
Description:			
Existing Current Member alternative name Description			
			^
			-
span length			
OK	Apply	Cano	el:

Double-click **MEMBER ALTERNATIVES** in the tree to create a new alternative. The New Member Alternative dialog shown below will open. Select **Reinforced Concrete** for the Material Type and **Reinforced Concrete I** for the Girder Type.

🗛 New Member Alternative	×
Material type:	Girder type:
Prestressed (pretensioned) concrete	Reinforced Concrete I
Reinforced concrete	Reinforced Concrete Tee
Steel	
Timber	
	OK Cancel

Click **OK** to close the dialog and create a new member alternative.

The Member Alternative Description window will open. Enter the appropriate data as shown below. Note: BR 6.4.1 will not automatically calculate and include the self-weight of the deck. Therefore, you must estimate the weight of the deck and apply it to the beam as an additional self-load. In this example, the deck is 1.5 feet thick and spans 22 feet between beams. Therefore, the additional self-load can be approximated as 11 ft*1.5 ft*0.150 k/ft³ = 2.475 k/ft, which is entered below.

By entering the deck weight at this location you are assuming that the deck and slabs were cast as a single unit while supported by false work. If this condition does not appear to be true for your particular bridge you should instead add the deck weight as an additional uniform load under the **Member Loads** tab.

and cr arcenta	tive: Car	nelback bea	m						
Description	Specs	Factors	Engine	Import	Control options				
Description:					Material typ	e: Reinforced Co	oncrete		
					Girder type:	Reinforced Co	oncrete l		
					Default unit	: US Customan	у 🗸		
Girder pro	perty inpu	it method	End be	aring locat	ions				
⊖ Schedu			Left:		in				
Cross-s	ection bas	sed	Right:		in				
Self load					Default rating m	athod			
Load case:		Engine Ass	ianed	~	LFD	~			
Additional	self load:		kip/ft						
Additional			%						
Crack cont		eter (Z)	1	Exposure					
Bottom of	beam:		kip/in	Bottom of	of beam:				

Expand **Member Alternatives** and **camelback beam (E)(C)** portions of the tree. The default materials for the member alternative must be defined. Enter data as shown in the figure below.

🕰 Default Materials			_	×
Member alternative nam	e: Camelback beam			
Deck concrete:	Concrete-1922	~		
Deck reinforcement:	Structural or unknown grade prior	~		
Beam concrete:	Concrete-1922	\checkmark		
Reinforcement:	Structural or unknown grade prior	~		
Stirrups:	Structural or unknown grade prior	~		

OK	Apply	Cancel
----	-------	--------

Open the Live Load Distribution window from the tree beneath camelback beam.

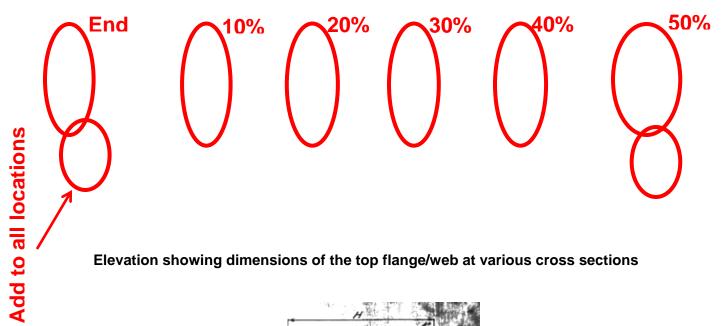
	actor inp	ut method			
Use simpli	fied met	nod 🔾	Use advanc	ed method	○ Use advanced method with 1994 guide specs
Allow distrib	oution fac	tors to be u	used to com	pute effects (of permit loads with routine traffic
			ution factor		
Lanes Ioaded	Shear	Shear at	/heels) Moment	Deflection	
1 Lane	1.500	supports 1.500	1.500	1.000	
Multi-lane	2.083	2.083	2.083	2.000	

If we try to use the **Compute from Typical Section** button on the Live Load Distribution **Standard tab** to populate the LFD live load distribution factors for this member alternative, we will receive a message that BR cannot calculate the distribution factors because beam shapes are not assigned to adjacent member alternatives.

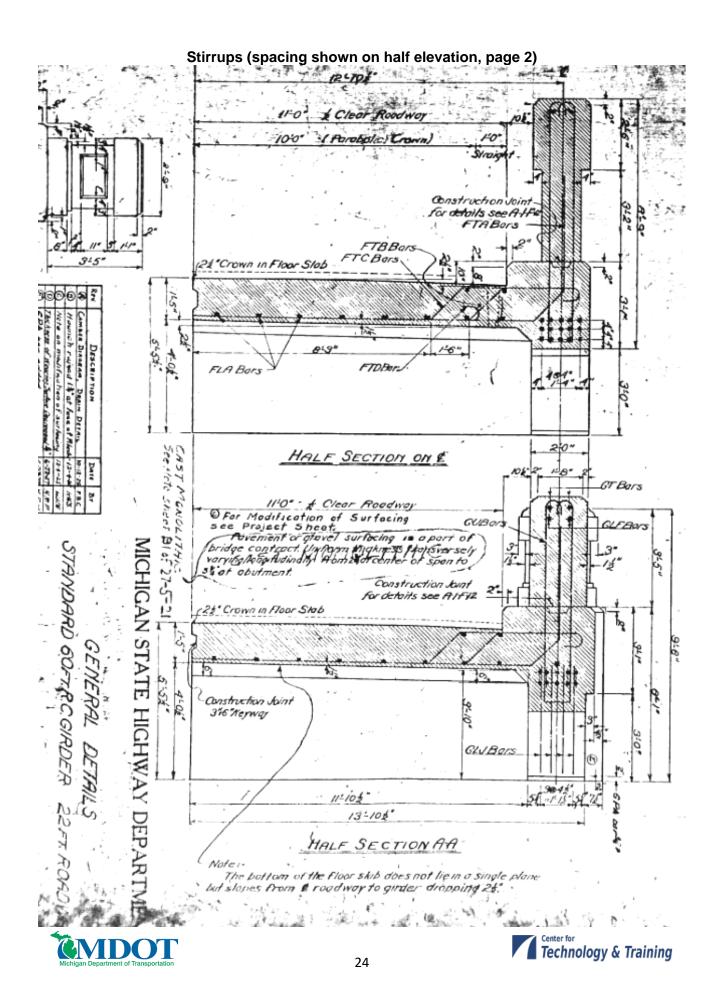
You must revisit this window after the member alternative has been created for the other side of the bridge. Then the **Compute from Typical Section** button will compute the distribution factors for you.

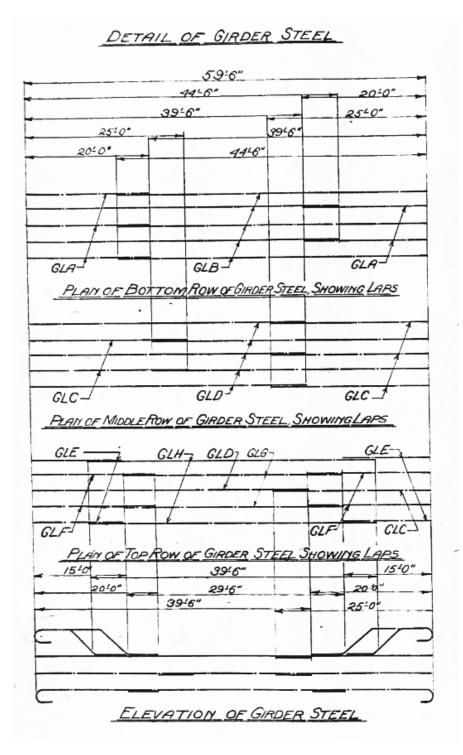
Cross Sections

The camelback shape will be modeled as a series of cross sections located at discrete points. Cross sections should be determined for 10th points along the length of the bridge. An elevation of half the bridge and half



sections for the end and center of the bridge are shown below along with a rebar schedule for interpretation of the reinforcing steel identified in the half sections. The cross section can be modeled as an I-beam. Use the elevation to determine the flange and web heights and the half section to determine the flange and web width and the rebar placement. If the section contains square reinforcing bars substitute those with the largest modern rebar size that produces an equal or lesser cross sectional area. In this example; No. 11 rebar (1.56 in²) was used to represent 1.25-in square rebar (1.56-in²). Additional rebar could be added to bring the total cross sectional area of steel in the model to what is found in the bridge provided no deterioration has occurred. Pay careful attention to any changes in rebar placement at the different cross sections. Steel reinforcing plans and elevations along with bending diagrams have been shown to provide the necessary information to ensure proper rebar locating at each section.

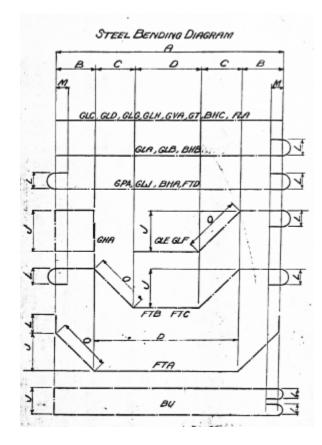



Elevation showing dimensions of the top flange/web at various cross sections

		W a	H	47		Č.
	-			and and a second	E.	1.11
٠f			11		Dig	8
•0/			4	4	10	
T			10	shi.	S SPAR	2
	GU, to	o Gu	y Bo	13 2	10 3	8
	Mork	No.		Length	Weight	£.
	GU,	4	8-7"		161 -	3
	" 2 -	4	8.4"		159	
	" 3	4	8:2"	19:2	157	24
	1.4	4	7:11"	18:8	153	13
	+ 5	4	78	18:2"	149	3
	~ 6	4	7:6	17:10	146	驗
	7	9	7:3	17-4	192	52
	-8	1	7-1"	17:00	139	1
	وم	1	6:10	16:6	135	÷4
	"10	1	6: 7	16:0"	131	52
	· //	9	6:5"	15-8-	128	÷.
	-12	1	6-3	15:4	125	
	-13	4	6-3	15-4	125	Č.
	- 14	4	C:5*	15:8	128 .	ЧĘ.,
	-15	9	6:6"	15:10	129	ς.
	-14	4	648	1612	132	-
	* /Z	4	6-10	16:6	135	÷
	+ /A	4	7-0	16:10	138 "	÷
		1	7-3	17-4"	142	γ.
	~20	4	7-6"	1740	146	
	.21	4	7'8	18:2"	149	
	122	4		18'6	151 .	
		4		19:00	155	h,
	"24	1	8:2	1912	157)
	Total		1		34154	Ċ.

Longitudinal Steel Placement

Note: From the elevation we see that the rebar in the third row from the bottom changes depth over the length of the bridge. The two outer bars (GLE) are located higher in the section and then drop down, followed by the

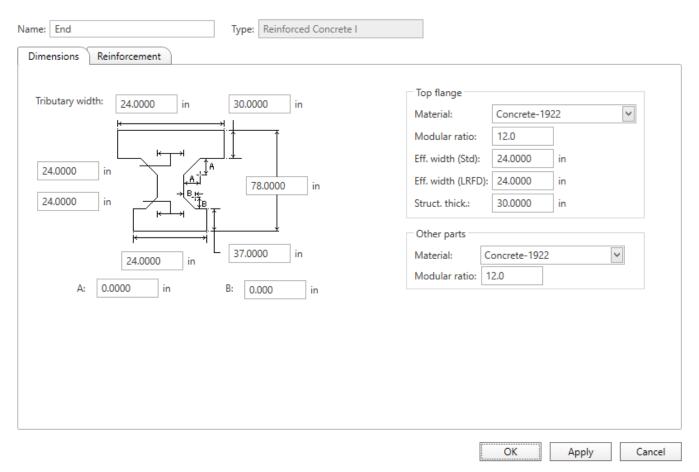


two inner bars (GLF). The center bar (GLC/CLD) remains at the same location over the length. This has been reflected in the cross sections modeled in BR (details on the next page).

	1.1.1			5	TLL	01	O/L		DAA	1.00	ň 🖓	電音		
LOGATION	MARK	A	В	C	D	L	J	M	01	No	Sie	Kind	Length	Weight
GIRDER	GLA	20'0		31, 1 1	°	75"	1	5"		10	14%	Der	2115"	1138
	GLB	-79'E		8	1.4.1	76	di	. 5"	· .	10	140	*	45:7"	R422
	GLC	25:0		3.15	12	24.1			1.1	12	140	· · · ·	25'0"	1594
	GLD	39'6'	1.1	8 · · ·	2.1	0.5	- h.	- 2		12	140		39-6"	2518
	GLE		4:10"	4110	5:0"	75"	440	5"	6110-	8.	142	<u>н</u>	18:1"	768
	GLF		9:10	410	5:00	26	140	5"	6-10-	8	1400	20.0	23:1"	98/
	GLG	29'6	- 2	1.1	医肌肉	1998	1.15	1.10			1400	$\tilde{\sigma} \rightarrow 0$	2946"	627
	GLH	39.6	1.1	1162	6754	· 98字	5	13	医囊儿	12	14 40	1.	39:6"	839
	GLU	12:9	181	662	18-3	76	6438	5	医复合管	76	1400	신원 # `	15:7"	1324
	GT	320	1.54	2.2	87.3	10.14	14	180	(1, 1)	184	6.ª#	$\sim r_{e^{-1}}$	32'0"	218
	GU 3	See	Tel	offe	WB.	13	1010	54	16.00	法罪	6.57	件人		3,415
	GHA		1-10	S^{*}	6	100	1.7%		1.12	32	10		6 6- 11"	188
	GVA	90	1.1	1.78	8	3.861	1.2	12	545	10	100	$\mathcal{S}_{1,\mathcal{O}_{1}}$	940-	490

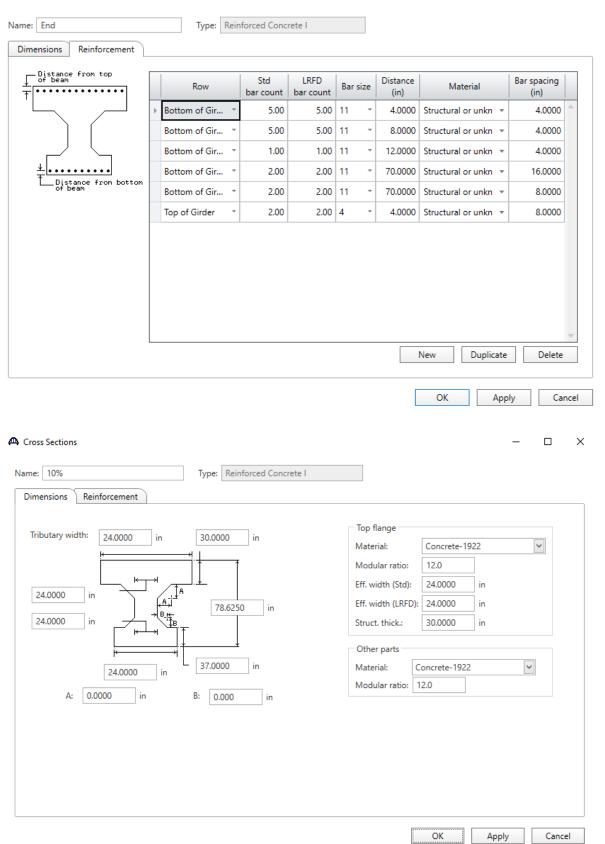
	1. L. A. J	1.128	4. ⁴¹² a		
BIL	LOF STEEL	BARS	1.50		

Description and Bending Details of Longitudinal Girder Reinforcing Steel


Cross Section Locations:

End - GLE and GLF both up 4'-10" from the 3rd row (70" from bottom of beam) 10% - GLE @ 3'-8" from the 3rd row (56" from bottom), GLF @ 4'-10" from 3rd row (70" from bottom) 20% - GLE @ 3rd row (12" from bottom), GLF @ 2'-8" from 3rd row (44" from bottom) 30% - GLE and GLF @ 3rd row (12 inches from bottom of beam)

Next describe the beam by double-clicking on **Cross Sections** in the tree. The Cross Sections windows with the cross sections identified from the plans are shown below. Remember to enter rebar locations as appropriate for the cross section, keeping in mind that these may change over the length of the bridge. In the following cross sections, the #4 rebar at the top of the section was assumed based on scale from the plans.



28

- 🗆 X

– 🗆 🗙

Technology & Training

Distance from top of beam		Row		Std bar count	LRFD bar count	Bar	size	Distance (in)	Material	Bar spacing (in)	
	I	Bottom of Gir	*	5.00	5.00	11	-	4.0000	Structural or unkn 🔻	4.0000	^
		Bottom of Gir	*	5.00	5.00	11	-	8.0000	Structural or unkn 💌	4.0000	
		Bottom of Gir	*	1.00	1.00	11	-	12.0000	Structural or unkn 💌	4.0000	
		Bottom of Gir	*	2.00	2.00	11	*	56.0000	Structural or unkn 💌	16.0000	
<pre> Distance from bottom of beam </pre>		Bottom of Gir	*	2.00	2.00	11	*	70.0000	Structural or unkn 💌	8.0000	
		Top of Girder	*	2.00	2.00	4	*	4.0000	Structural or unkn 💌	8.0000	

e: 20% Typ	Reinforced Concrete I			
mensions Reinforcement				
ributary width: 24.0000 in 33	.3750 in	Top flange Material: Modular ratio:	Concrete-1922	~
16.0000 in 16.0000 in 16.0000 in ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	86.7500 in	Eff. width (Std): Eff. width (LRFD): Struct. thick.:	24.0000 in 24.0000 in 30.0000 in	
24.0000 in B:	.0000 in		oncrete-1922 2.0	>

- Distance from top of beam	Row		Std bar count	LRFD bar count	Bar size	Distance (in)	Material	Bar spacing (in)	
	Bottom of Gir	*	5.00	5.00	11 -	4.0000	Structural or unkn 💌	4.0000	4
	Bottom of Gir	*	5.00	5.00	11 *	8.0000	Structural or unkn 💌	4.0000	
	Bottom of Gir	-	1.00	1.00	11 *	12.0000	Structural or unkn 💌	4.0000	
	Bottom of Gir	*	2.00	2.00	11 *	12.0000	Structural or unkn 💌	16.0000	
Distance from bottom of beam	Bottom of Gir	•	2.00	2.00	11 *	44.0000	Structural or unkn 💌	8.0000	
	Top of Girder	*	2.00	2.00	4 *	4.0000	Structural or unkn 💌	8.0000	

A Cross Sections

ributary width: 24,0000 in 30,0000 in 16,0000 in 10,000 in 10,00	Top flange Material: Concrete-1922 Modular ratio: 12.0 Eff. width (Std): 24.0000 in Eff. width (LRFD): 24.0000 in Struct. thick.: 30.0000 in
24.0000 in B: 0.000 in in	Material: Concrete-1922 Modular ratio: 12.0

– 🗆 X

Name: 30% Dimensions Reinforcement		Type: R	lein	forced Conc	rete l						
↓ Distance from top of beam ↑ • • • • • • • • • • • • • • • • • •		Row		Std bar count	LRFD bar count	Bar	size	Distance (in)	Material	Bar spacing (in)	
	Þ	Bottom of Gir	Ŧ	5.00	5.00	11	*	4.0000	Structural or unkn 💌	4.0000	-
		Bottom of Gir	*	5.00	5.00	11	Ŧ	8.0000	Structural or unkn 👻	4.0000	
		Bottom of Gir	-	5.00	5.00	11	Ŧ	12.0000	Structural or unkn 👻	4.0000	
⊥ ↓ Distance from bottom of beam		Top of Girder	*	2.00	2.00	4	*	4.0000	Structural or unkn 👻	8.0000	
											4
									New Duplicate	Delete	
									ОК Арр	ly Ca	ncel

A Cross Sections

– 🗆 🗙

Center for Technology & Training

Tributary width: 24.0000 in 30.0000 in Material: Concrete-1922
16.0000 in 8. 0.0000 in B: 0.0000 in

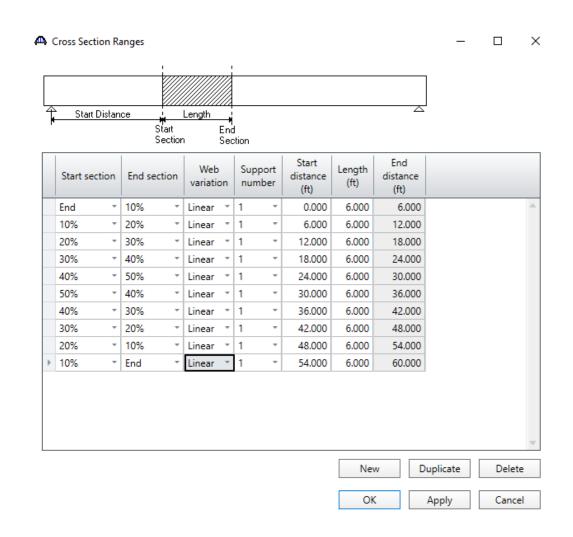
ne: 40%	Type: Rein	forced Conc	rete l				
Distance from top of beam	Row	Std bar count	LRFD bar count	Bar size	Distance (in)	Material	Bar spacing (in)
	I Bottom of Gir *	5.00	5.00	11 *	4.0000	Structural or unkn 🔻	4.0000 ^
	Bottom of Gir 🔻	5.00	5.00	11 -	8.0000	Structural or unkn 👻	4.0000
	Bottom of Gir 👻	5.00	5.00	11 *	12.0000	Structural or unkn 👻	4.0000
↓ ↓ Distance from bottom of beam	Top of Girder *	2.00	2.00	4 -	4.0000	Structural or unkn 👻	8.0000
						New Duplicate	Delete
						Dupicate	Delete
					Γ	ОК Арр	ly Cance

A Cross Sections

– 🗆 🗙

Name: 50%	Type:	Reinforced Concrete I	
Dimensions Reinforcement			
Tributary width: 24.0000 in 16.0000 in 16.0000 in 24.0000 in A: 0.0000 in	- 37.00	000 in M Ef 05.0000 in Ef 000 in M	 Concrete-1922 ✓ 12.0 24.0000 in 30.0000 in Concrete-1922 ✓ 12.0
			OK Apply Cancel

– 🗆 🗙


Bottom of Gir Bottom of Gir Bottom of Gir	* *	5.00	5.00	11 -	4 00000			
	-			<u> </u>	4.0000	Structural or unkn 🔻	4.0000	4
Bottom of Gir		5.00	5.00	11 *	8.0000	Structural or unkn 💌	4.0000	
bottom of on	*	5.00	5.00	11 *	12.0000	Structural or unkn 👻	4.0000	
Top of Girder	-	2.00	2.00	4 -	4.0000	Structural or unkn 💌	8.0000	

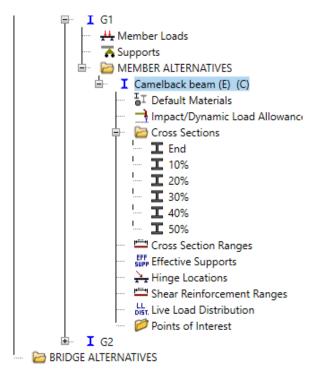
- 🗆 ×

Now that the cross sections have been entered we must assign them to the appropriate locations along the beam. Open the **Cross Section Ranges** window. The cross sections were identified for the end of the beam and then every 6 feet along the bridge length (10th points). Starting with the end of the beam select the start and end cross sections and then corresponding length between these sections. This model can be further refined with more cross section descriptions and shorter length between cross sections.

Open the **Shear Reinforcement Ranges** window and define the location and spacing of shear reinforcement as determined from the plans.

RC Shear Reinforcement Ranges

	Name		Support number	Start distance (ft)	Number of spaces	Spacing (in)	Length (ft)	End distance (ft)
s	hear stirrups	Ŧ	1 *	2.33	1	0.0000	0.00	2.33
s	hear stirrups	Ŧ	1 *	2.33	6	8.0000	4.00	6.33
s	hear stirrups	Ŧ	1 *	6.33	5	10.0000	4.17	10.50
s	hear stirrups	*	1 -	10.49	6	12.0000	6.00	16.49
s	hear stirrups	*	1 -	16.49	3	36.0000	9.00	25.49
s	hear stirrups	*	1 -	20.99	3	30.0000	7.50	28.49
s	hear stirrups	*	1 -	28.49	1	36.0000	3.00	31.49
s	hear stirrups	*	1 -	31.49	3	30.0000	7.50	38.99
s	hear stirrups	*	1 -	38.99	3	18.0000	4.50	43.49
s	hear stirrups	*	1 -	43.49	6	12.0000	6.00	49.49
s	hear stirrups	*	1 -	49.49	5	10.0000	4.17	53.66
s	hear stirrups	*	1 *	53.66	6	8.0000	4.00	57.66


OK

Apply

Cancel

Next, copy G1 to G2. Do this by right clicking on *camelback beam (E)(C)*, select copy, then right click on **MEMBER ALTERNATIVES** under G2 and select paste.

Now that all beams within the span have been defined we are able to go back to windows within the bridge tree that will require updating.

The Live Load Distribution window for both G1 and G2 needs to be updated, select Compute from Typical Section.

🗛 Live Load Distribution

	ndard LRF					
	Distribution fa					
(Use simpli	fied met	hod 🔾	Use advanc	ed method	○ Use advanced method with 1994 guide specs
	Allow distrib	ution fac	tors to be u	used to com	pute effects o	of permit loads with routine traffic
	Lanes			ution factor /heels)		
	loaded	Shear	Shear at supports	Moment	Deflection	
Þ	1 Lane	1.500	1.500	1.500	1.000	1
	Multi-lane	2.083	2.083	2.083	2.000	
-						
	Compute from ypical section		View calcs			
			View calcs			

Bridge Alternatives

Now that the superstructure definitions are modeled, Bridge Alternatives must be created. This makes it possible to rate the entire bridge at one time and also perform batch processes in the Bridge Explorer workspace, which is important for permitting issues.

For load rating, there will typically be only one Bridge Alternative. Another Bridge Alternative could be created for a proposed bridge or rehabilitation project, but only one bridge alternative should be existing/current at a time. Each superstructure that was entered above now needs its own definition in the Bridge Alternative. Select the superstructure wizard. Enter the number of superstructures. Enter the superstructure and

superstructure alternative names and then select the superstructure definition that you want to link to each alternative.

The bridge alternative portion of the tree may be created manually by double-clicking on each branch and assigning the necessary bridge components to each branch as shown above (**Superstructure Wizard...** button may be selected to aid in this process). Double-click **BRIDGE ALTERNATIVES** and enter the Alternative Name, then select the **Superstructure Wizard...** button and enter the data shown in the window below.

🗛 Superstructu	re Wizard				×
Definitions to the	e new alternativ	Superstructures, Superstruct res. The wizard will also creat Bridge Alternative does not c	e Piers if you are r	unning BrD Su	
Number of super	rstructures	1			
Prefix to use w	hen generating	names			
Superstructure	e prefix:	Superstructure %	Gene	rate names	
Superstructur	e alternative pro	efix: Superstructure Alt %	Gene	rate names	
Superstructu name	ure Distance (ft)	Superstructure alternative name	Superstructure definition		
I Camelback		Camelback	Camelback -		
					*
Substructure u	nits				
First unit type:	Abutment	~			
Last unit type:	Abutment	~			

Click **Finish** to close the Superstructure Wizard and **OK** to save the Bridge Alternative data to memory and close the window.

Analysis

Vehicle Selection

From the *Bridge* menu, select *Analysis Settings* and load the following vehicles into the rating column:

Design review Rating Rating method: LFD Image: Comparison of the second of the	🕰 Analysis Settings		_		>
Lane / Impact loading type: As Requested Apply preference setting: None Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to Add to A	O Design review Rating	Rating method: LFD	~		
Vehicles Output Engine Description Traffic direction: Both directions Refresh Temporary vehicles Advanced Vehicle selection Vehicle summary Michigan 2 Unit Truck 13-NL Michigan 2 Unit Truck 15-DL Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 16-NL Michigan 2 Unit Truck 18-NL Michigan 2 Unit Truck 18-NL Michigan 3 Unit Truck 20-NL Michigan 3 Unit Truck 20-NL Michigan 3 Unit Truck 21-NL Michigan 3 Unit Truck 22-NL Michigan Overload Truck 03 Class A Michigan Overload Truck 03 Class A<td>Analysis type: Line Girder</td><td>V</td><td></td><td></td><td></td>	Analysis type: Line Girder	V			
Traffic direction: Both directions Refresh Temporary vehicles Advanced Vehicle selection Vehicle summary Immentance Immentance Immentance Immentance Michigan 2 Unit Truck 13-NL Michigan 2 Unit Truck 15-NL Immentance Immentance Immentance Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 15-NL Immentance Immentance Immentance Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 15-NL Immentance Immentance Immentance Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 16-NL Immentance Immentance Immentance Michigan 2 Unit Truck 18-NL Michigan 3 Unit Truck 20-DL Immentance Immentance Immentance Michigan 3 Unit Truck 20 Michigan 3 Unit Truck 21-DL Immentance Immentance Immentance Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 22-NL Immentance Immentance Immentance Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 22-NL Immentance Immentance Immentance Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 22-NL Immentance Immentance Immentance Michigan 3 Unit Tru	Lane / Impact loading type: As Requested	Apply preference setting: None	~		
Vehicle selection Vehicle summary -Michigan 2 Unit Truck 13-NL -Michigan 2 Unit Truck 15-DL -Michigan 2 Unit Truck 15-NL -Michigan 2 Unit Truck 15-NL -Michigan 2 Unit Truck 16-DL -Michigan 2 Unit Truck 16-DL -Michigan 2 Unit Truck 17-DL -Michigan 1 Unit Truck 05-DL -Michigan 2 Unit Truck 18-DL -Michigan 1 Unit Truck 05-DL -Michigan 2 Unit Truck 18-DL -Michigan 3 Unit Truck 23-DL -Michigan 3 Unit Truck 19-DL -Michigan 3 Unit Truck 22-DL -Michigan 3 Unit Truck 21-DL Remove from -Michigan 3 Unit Truck 22-DL -Michigan 3 Unit Truck 22-NL -Michigan 3 Unit Truck 22-NL <t< td=""><td>Vehicles Output Engine Description</td><td></td><td></td><td></td><td></td></t<>	Vehicles Output Engine Description				
 Michigan 2 Unit Truck 13-NL Michigan 2 Unit Truck 15-DL Michigan 2 Unit Truck 15-DL Michigan 2 Unit Truck 16-DL Michigan 2 Unit Truck 16-DL Michigan 2 Unit Truck 17-DL Michigan 2 Unit Truck 17-DL Michigan 2 Unit Truck 18-DL Michigan 2 Unit Truck 18-DL Michigan 3 Unit Truck 19-DL Michigan 3 Unit Truck 20 Michigan 3 Unit Truck 21-DL Michigan 3 Unit Truck 22-DL Michigan 3 Unit Truck 05-DL Michigan 3 Unit Truck 05-DL Michigan 3 Unit Truck 05-DL Michigan 4 Unit Truck 05-DL Michigan 0 Verload Truck 05 Class A Michigan 0 Verload Truck 03 Class A 	Traffic direction: Both directions	Refresh Temporary vehicles	Advanced]	
 Michigan 2 Unit Truck 14 Michigan 2 Unit Truck 15-DL Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 16-DL Michigan 2 Unit Truck 16-NL Michigan 2 Unit Truck 17-DL Michigan 2 Unit Truck 18-NL Michigan 2 Unit Truck 18-DL Michigan 2 Unit Truck 18-DL Michigan 3 Unit Truck 19-DL Michigan 3 Unit Truck 20 Michigan 3 Unit Truck 21-DL Michigan 3 Unit Truck 22-DL Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 23-DL Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 23-DL Michigan 3 Unit Truck 23-DL Michigan 3 Unit Truck 22-NL Michigan 3 Unit Truck 23-DL Michigan 4 Unit Truck 23-DL Michigan 5 Unit Truck 23-DL Michigan 6 Unit Truck 23-DL Michigan 7 Unit Truck 25-DL Michigan	Vehicle selection	Vehicle summary			
Michigan Overload Truck 05 Class AMichigan Overload Truck 06 Class A	 Michigan 2 Unit Truck 14 Michigan 2 Unit Truck 15-DL Michigan 2 Unit Truck 15-NL Michigan 2 Unit Truck 16-DL Michigan 2 Unit Truck 16-NL Michigan 2 Unit Truck 17-DL Michigan 2 Unit Truck 17-NL Michigan 2 Unit Truck 18-DL Michigan 2 Unit Truck 18-DL Michigan 3 Unit Truck 19-DL Michigan 3 Unit Truck 19-NL Michigan 3 Unit Truck 21-DL Michigan 3 Unit Truck 21-DL Michigan 3 Unit Truck 22-DL Michigan 3 Unit Truck 23-DL Michigan 3 Unit Truck 23-DL Michigan 3 Unit Truck 24-DL Michigan 3 Unit Truck 24-DL Michigan 3 Unit Truck 25-DL Michigan 0verload Truck 02 Class A Michigan Overload Truck 04 Class A Michigan Overload Truck 04 Class A Michigan Overload Truck 05 Class A 	Add to Ad			
Reset Clear Open template Save template OK Apply Cancel	Reset Clear Open template	ave template OK	Apply	Cance	el

Select **OK**

Note: MDOT trucks 5-DL, 18-DL and 23-DL are used in this analysis as they are the commonly controlling 1-unit, 2-unit and 3-unit trucks, respectively. The load rating engineer should evaluate the list of legal vehicles to determine whether others may control and include them in the analysis if necessary. In addition, if posting is required, all legal loads must be analyzed to determine the lowest tonnage for each vehicle category.

Analysis

Go to *Bridge/Analyze*. You will be informed regarding progress and completion of the analysis.

Analysis Progress]
Analysis Event	 Location - 6.0000 (ft) Location - 12.0000 (ft) Location - 18.0000 (ft) Location - 24.0000 (ft) Location - 30.0000 (ft) Location - 36.0000 (ft) Location - 42.0000 (ft) Location - 48.0000 (ft) Location - 54.0000 (ft) Location - 54.0000 (ft) Location - 60.0000 (ft) Location - 5.9545 (ft) Location - 53.9934 (ft) Completed Specification Check. Info - Finished LFR specification checking Info - Finished populating specification checking results Info - Analysis completed! 	E
۰ III ا	<	F
View Rating Log	Print	ОК

Reporting

Results of the analysis may be viewed using the *Report Tool* located within the *Bridge* menu.

A Camelback	- LFD Report	- • •
Report Type:	LFD Analysis Output Advanced Begin each topi	ic on a new page when printed
Report New	Open Merge Save Save As	Generate
☐ Reactions ☐ Moments ☐ Shears ☐ Cross Sect	Vehicle Rating Summary tion Properties ating Results	
Clear All	Select All Delete	Close

Select Generate.

Bridge Name: Sample of a Camelback Bridge Load Rating NBI Structure ID: camelback1 Bridge ID: camelback1

Analyzed By: BrR Analyze Date: Monday, September 13, 2016 12:58:35 Analysis Engine: AASHTO LFR Engine Version 7.0.3001 Analysis Preference Setting: None

Report By: brr Report Date: Monday, September 13, 2021 13:00:09

Structure Definition Name: camelback Member Name: G1 Member Alternative Name: camelback beam

			Load Factor	Rating Summ	nary				
		Rating		Capacity		Location			
Live Load		Factor	Controls	(Ton)	Span	(ft)	Percent	Impact	Lane
HS 20-44	Inventory	0.836	Design Shear - Concrete	30.11	1	60.00	100.0	As Requested	As Requested
HS 20-44	Operating	1.397	Design Shear - Concrete	50.28	1	60.00	100.0	As Requested	As Requested
Michigan 1 Unit Truck 05-DL	Operating	1.334	Design Shear - Concrete	56.04	1	60.00	100.0	As Requested	As Requested
Michigan 2 Unit Truck 18-DL	Operating	0.901	Design Shear - Concrete	69.38	1	60.00	100.0	As Requested	As Requested
Michigan 3 Unit Truck 23-DL	Operating	0.962	Design Shear - Concrete	74.10	1	60.00	100.0	As Requested	As Requested

Note: "N/A" indicates not applicable "**" indicates not available

Bridge Name: Sample of a Camelback Bridge Load Rating NBI Structure ID: camelback1 Bridge ID: camelback1

Analyzed By: BrR Analyze Date: Monday, September 13, 2016 12:58:35 Analysis Engine: AASHTO LFR Engine Version 7.0.3001 Analysis Preference Setting: None

Report By: brr Report Date: Monday, September 13, 2021 13:00:09

Structure Definition Name: camelback **Member Name:** G2 **Member Alternative Name:** Copy of camelback beam

Load Factor Rating Summary

		Rating		Capacity		Location			
Live Load		Factor	Controls	(Ton)	Span	(ft)	Percent	Impact	Lane
HS 20-44	Inventory	0.836	Design Shear - Concrete	30.11	1	60.00	100.0	As Requested	As Requested
HS 20-44	Operating	1.397	Design Shear - Concrete	50.28	1	60.00	100.0	As Requested	As Requested
Michigan 1 Unit Truck 05-DL	Operating	1.334	Design Shear - Concrete	56.04	1	60.00	100.0	As Requested	As Requested
Michigan 2 Unit Truck 18-DL	Operating	0.901	Design Shear - Concrete	69.38	1	60.00	100.0	As Requested	As Requested
Michigan 3 Unit Truck 23-DL	Operating	0.962	Design Shear - Concrete	74.10	1	60.00	100.0	As Requested	As Requested

Note: "N/A" indicates not applicable "**" indicates not available

